4.6 Article

Effects of cytokine-induced macrophages on the response of tumor cells to banoxantrone (AQ4N)

期刊

MOLECULAR CANCER THERAPEUTICS
卷 8, 期 5, 页码 1261-1269

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1535-7163.MCT-08-0927

关键词

-

类别

资金

  1. Medical Research Council Programme [G0500366]
  2. EU
  3. Ministry of Higher Education & Scientific Research
  4. MRC [G0500366] Funding Source: UKRI
  5. Medical Research Council [G0500366] Funding Source: researchfish

向作者/读者索取更多资源

Tumor-associated macrophages (TAMs) are found in many solid tumors and have often been shown to accumulate in the hypoxic regions surrounding areas of necrosis. TAMs are the major site of expression of nitric oxide synthase (NOS), a heme-containing homodimeric enzyme consisiting of oxygenase and reductase domains. The latter has a high degree of sequence homology to cytochrome P450 reductase and a functional consequence of this is the ability of NOS, under hypoxic conditions, to activate the bioreductive drugs tirapazamine and RSU1069. Banoxantrone MOW is a bioreductive prodrug activated in hypoxia by an oxygen-dependent two-electron reductive process to yield the topoisomerase 11 inhibitor AQ4. A feature of this process is that the final product could potentially show bystander cell killing. Thus, in this study, we investigated the ability of inducible NOS (iNOS)-expressing TAMs to activate AQ4N and elicit toxicity in cocultured human tumor cells. Murine macrophages were induced to overexpress iNOS by treatment with a combination of cytokines, mixed with HT 1080 and HCT 116 human tumor cells, and the toxicity of AQ4N was determined under aerobic or hypoxic conditions. The aerobic toxicity of AQ4N toward tumor cells was not affected through coculturing with macrophages. However, under hypoxic conditions, the induction of iNOS activity in the macrophages was associated with an increase in AQ4N metabolism and a substantial increase in tumor cell toxicity, which was dependent on the proportion of macrophages in the culture. This study is the first demonstration of TAM-mediated prodrug activation to result in bystander killing of human tumor cells. [Mol Cancer Ther 2009;8(5):1261-9]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据