4.5 Article

Snail Cooperates with KrasG12D to Promote Pancreatic Fibrosis

期刊

MOLECULAR CANCER RESEARCH
卷 11, 期 9, 页码 1078-1087

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1541-7786.MCR-12-0637

关键词

-

资金

  1. National Cancer Institute [R01CA126888]
  2. Department of Veterans Affairs [I01BX001363]

向作者/读者索取更多资源

Patients with pancreatic cancer, which is characterized by an extensive collagen-rich fibrotic reaction, often present with metastases. A critical step in cancer metastasis is epithelial-to-mesenchymal transition (EMT), which can be orchestrated by the Snail family of transcription factors. To understand the role of Snail (SNAI1) in pancreatic cancer development, we generated transgenic mice expressing Snail in the pancreas. Because chronic pancreatitis can contribute to pancreatic cancer development, Snail-expressing mice were treated with cerulein to induce pancreatitis. Although significant tissue injury was observed, a minimal difference in pancreatitis was seen between control and Snail-expressing mice. However, because Kras mutation is necessary for tumor development in mouse models of pancreatic cancer, we generated mice expressing both mutant Kras(G12D) and Snail (Kras(+)/Snail(+)). Compared with control mice (Kras(+)/Snai(-)), Kras(+)/Snail(+) mice developed acinar ectasia and more advanced acinar-to-ductal metaplasia. The Kras(+)/Snail(+) mice exhibited increased fibrosis, increased phosphorylated Smad2, increased TGF-beta 2 expression, and activation of pancreatic stellate cells. To further understand the mechanism by which Snail promoted fibrosis, we established an in vitro model to examine the effect of Snail expression in pancreatic cancer cells on stellate cell collagen production. Snail expression in pancreatic cancer cells increased TGF-beta 2 levels, and conditioned media from Snail-expressing pancreatic cancer cells increased collagen production by stellate cells. Additionally, inhibiting TGF-beta signaling in stellate cells attenuated the conditioned media-induced collagen production by stellate cells. Together, these results suggest that Snail contributes to pancreatic tumor development by promoting fibrotic reaction through increased TGF-beta signaling. (C) 2013 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据