4.5 Article

Macrophage Migration Inhibitory Factor Is Secreted by Rhabdomyosarcoma Cells, Modulates Tumor Metastasis by Binding to CXCR4 and CXCR7 Receptors and Inhibits Recruitment of Cancer-Associated Fibroblasts

期刊

MOLECULAR CANCER RESEARCH
卷 8, 期 10, 页码 1328-1343

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1541-7786.MCR-10-0288

关键词

-

资金

  1. National Center for Research Resources, NIH [P20RR018733, R01 CA106281-01, R01 DK074720]
  2. EU
  3. Innovative Economy Operational Program [POIG.01.01.01-00-109/09-01]
  4. Henry M. and Stella M. Hoenig Endowment

向作者/读者索取更多资源

The overexpression of macrophage migration inhibitory factor (MIF) has been observed in many tumors and is implicated in oncogenic transformation and tumor progression. MIF activates CXCR2 and CD74 receptors and, as recently reported, may also bind to the stromal-derived factor-1 (SDF-1)-binding receptor CXCR4. Here, we report that human rhabdomyosarcoma (RMS) cell lines secrete MIF and that this chemokine (a) induces phosphorylation of mitogen-activated protein kinase (MAPK) p42/44 and AKT, (b) stimulates RMS cell adhesion, (c) enhances tumor vascularization, but surprisingly (d) decreases recruitment of cancer-associated fibroblasts (CAF). Because RMS cells used in our studies do not express CXCR2 and CD74 receptors, the biological effects of MIF on RMS cells depend on its interaction with CXCR4, and as we report here for the first time, MIF may also engage another SDF-1-binding receptor (CXCR7) as well. Interestingly, down-regulation of MIF in RMS cells inoculated into immunodeficient mice led to formation of larger tumors that displayed higher stromal cell support. Based on these observations, we postulate that MIF is an important autocrine/paracrine factor that stimulates both CXCR4 and CXCR7 receptors to enhance the adhesiveness of RMS cells. We also envision that when locally secreted by a growing tumor, MIF prevents responsiveness of RMS to chemoattractants secreted outside the growing tumor (e. g., SDF-1) and thereby prevents release of cells into the circulation. On the other hand, despite its obvious proangiopoietic effects, MIF inhibits in CXCR2/CD74-dependent manner recruitment of CAFs to the growing tumor. Our data indicate that therapeutic inhibition of MIF in RMS may accelerate metastasis and tumor growth. Mol Cancer Res; 8(10); 1328-43. (C) 2010 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据