4.7 Article

Signal transducer and activator of transcription 3 activation up-regulates interleukin-6 autocrine production: a biochemical and genetic study of established cancer cell lines and clinical isolated human cancer cells

期刊

MOLECULAR CANCER
卷 9, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/1476-4598-9-309

关键词

-

资金

  1. National Cheng Kung University Program for Promoting Academic Excellence and Developing World Class Research Centers (Taiwan)
  2. Department of Health, Executive Yuan, Taiwan [DOH99-TD-B-111-002, DOH99-TD-C-111-003]
  3. National Science Council, Taiwan [NSC99-3112-B-006-012, NSC99-2120-M-006-005]

向作者/读者索取更多资源

Background: Spontaneous interleukin-6 (IL-6) production has been observed in various tumors and implicated in the pathogenesis, progression and drug resistance in cancer. However, the regulation of IL-6 autocrine production in cancer cells is not fully understood. IL-6 is auto-regulated in many types of cell. Two of the three major downstream pathways of IL-6, MEK/extracellular signal-related kinase (Erk) pathway and phosphatidylinositol 3-kinase (PI3-K)/Akt pathway, have been shown to regulate IL-6 expression through the activation of AP-1 and NF-kappa B. However, it is not clear what the role of Janus kinase (Jak) 2/signal transducer and activator of transcription (Stat) 3 pathway. This study was designed to determine the role of Jak2/Stat3 pathway in the regulation of IL-6 autocrine production in cancer cells. Results: Inhibitors of Jak2/Stat3, MEK/Erk and PI3-K/Akt pathways down-regulated IL-6 secretion in the lung adenocarcinoma PC14PE6/AS2 (AS2) cells, which spontaneously secreted IL-6 and possessed constitutively activated Stat3. Transfection with dominant-negative Stat3, Stat3 siRNA, or Stat3 shRNA decreased IL-6 expression in AS2 cells. Conversely, transfection with constitutively-activated Stat3 increased the production of IL-6. In AS2 derived cells, resistance to paclitaxel was positively correlated with Stat3 activation status and the expression of IL-6, which is commonly secreted in drug resistant cancer cells. The pharmacological inhibition of NF-kappa B, PI3-K/Akt and MEK/Erk and the pharmacological inhibition and genetic inhibition (Stat3 siRNA) of Jak2/Stat3 pathway decreased IL-6 autocrine production in various drug resistant cancer cell lines and similarly decreased IL-6 autocrine production in clinically isolated lung cancer cells. Conclusions: This study is the first to directly address the role Stat3 plays on the autocrine production of IL-6, which occurs through a positive-feedback loop. Our biochemical and genetic studies clearly demonstrated that Jak2/Stat3, in combination with other IL-6 downstream pathways, contributed frequently and substantially to IL-6 autocrine production in a broad spectrum of cancer cell lines as well as in clinical cancer samples. Our findings suggest that Stat3 could potentially be regulated to suppress IL-6 autocrine production in cancer cells to inhibit the progression of cancer and reduce drug resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据