4.1 Article

Proteomic analysis of temperature stress-responsive proteins in Arabidopsis thaliana rosette leaves

期刊

MOLECULAR BIOSYSTEMS
卷 9, 期 6, 页码 1257-1267

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3mb70137a

关键词

-

资金

  1. Italian Ministry of Economy and Finance [191/2009]

向作者/读者索取更多资源

Plants, as sessile organisms, are continuously exposed to temperature changes in the environment. Low and high temperature stresses have a great impact on agricultural productivity, since they significantly alter plant metabolism and physiology. Plant response to temperature stress is a quantitative character, being influenced by the degree of stress, time of exposure, as well as plant adaptation ability; it involves profound cellular changes at the proteomic level. We describe here the quantitative variations of the protein repertoire of Arabidopsis thaliana rosette leaves after exposing seedlings to either short-term cold or heat temperature stress. A proteomic approach, based on two-dimensional electrophoresis and MALDI-TOF peptide mass fingerprinting and/or nanoLC-ESI-LIT-MS/MS experiments, was used for this purpose. The comparison of the resulting proteomic maps highlighted proteins showing quantitative variations induced by temperature treatments. Thirty-eight protein spots exhibited significant quantitative changes under at least one stress condition. Identified, differentially-represented proteins belong to two main broad functional groups, namely energy production/carbon metabolism and response to abiotic and oxidative stresses. The role of the identified proteins is discussed here in relation to plant adaptation to cold or heat stresses. Our results suggest a significant overlapping of the responses to opposite temperature extremes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据