4.1 Article

In silico metabolic engineering of Bacillus subtilis for improved production of riboflavin, Egl-237, (R,R)-2,3-butanediol and isobutanol

期刊

MOLECULAR BIOSYSTEMS
卷 9, 期 8, 页码 2034-2044

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3mb25568a

关键词

-

资金

  1. National Project of Key Fundamental Research [2012CB725203, 2011CBA00804]
  2. National Natural Science Foundation of China [21106095, 61100124, 21176182]
  3. Foundation of Introducing Talents [5RL123]
  4. Programme of Introducing Talents of Discipline [B06006]

向作者/读者索取更多资源

Bacillus subtilis is a Gram-positive sporiferous bacterium widely used in a variety of industrial fields as a producer of high-quality vitamins, enzymes and proteins. Many genetic modifications and evolutionary engineering optimisations aiming at obtaining a better performing strain for its products have been studied. As genome-scale metabolic network models have gained significant popularity as effective tools in metabolic phenotype studies, we reconstructed a genome-scale metabolic network of B. subtilis - iBsu1147. The accuracy of iBsu1147 is validated by growth on various carbon sources, single gene knockout and large fragment non-essential gene knockout simulations. The model is used for the in silico metabolic engineering design of reactions over/underexpressed or knockout for increasing the production of four important products of B. subtilis: riboflavin, cellulase Egl-237, (R,R)-2,3-butanediol and isobutanol. The simulation predicted candidate reactions related to the improvement of strain performance on related products. The prediction is partly supported by previously published results. Due to the complexity of the biological system, it is difficult to manually find the factors that are not directly related to the production of the target compounds. The in silico predictions provide more choices for further strain improvement for these products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据