4.1 Article

Implementing an OR-NOT (ORN) logic gate with components of the SOS regulatory network of Escherichia coli

期刊

MOLECULAR BIOSYSTEMS
卷 7, 期 8, 页码 2389-2396

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1mb05094j

关键词

-

资金

  1. Spanish Ministry of Science and Innovation
  2. EU
  3. Autonomous Community of Madrid

向作者/读者索取更多资源

Whether biological or electronic, man-engineered computation is based on logic circuits assembled with binary gates that are interconnected to perform Boolean operations. We report here the rewiring of the SOS system of Escherichia in a fashion that makes the output of both the recA and lexA promoters to faithfully follow the pattern of a binary composite OR-NOT gate (ORN) in which the inputs are DNA damage (e. g. nalidixic acid addition) and IPTG as an exogenous signal. Unlike other non-natural gates whose implementation requires changes in genes and promoters of the genome of the host cells, this ORN was brought about by the sole addition of wild-type bacteria with a plasmid encoding a module for LacI(q)-dependent expression of lexA. Specifically, we demonstrate that the interplay between native, chromosomally-encoded components of the SOS system and the extra parts engineered in such a plasmid made the desired performance to happen without any modification of the core DNA-damage response network. It is thus possible to artificially interface autonomous cell networks with a predetermined logic by means of Boolean gates built with regulatory elements already functioning in the recipient organism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据