4.5 Article

Multistate resistive switching in silver nanoparticle films

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1468-6996/16/4/045004

关键词

resistive switching; nanomaterials; memory

资金

  1. Ministry of Education, Culture, Sports, Science and Technology (MEXT) World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA)
  2. Irving and Jean Stone estate

向作者/读者索取更多资源

Resistive switching devices have garnered significant consideration for their potential use in nanoelectronics and non-volatile memory applications. Here we investigate the nonlinear current-voltage behavior and resistive switching properties of composite nanoparticle films comprising a large collective of metal-insulator-metal junctions. Silver nanoparticles prepared via the polyol process and coated with an insulating polymer layer of tetraethylene glycol were deposited onto silicon oxide substrates. Activation required a forming step achieved through application of a bias voltage. Once activated, the nanoparticle films exhibited controllable resistive switching between multiple discrete low resistance states that depended on operational parameters including the applied bias voltage, temperature and sweep frequency. The films' resistance switching behavior is shown here to be the result of nanofilament formation due to formative electromigration effects. Because of their tunable and distinct resistance states, scalability and ease of fabrication, nanoparticle films have a potential place in memory technology as resistive random access memory cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据