4.5 Article

Isolation and characterization of a Laccase gene potentially involved in proanthocyanidin polymerization in oriental persimmon (Diospyros kaki Thunb.) fruit

期刊

MOLECULAR BIOLOGY REPORTS
卷 40, 期 4, 页码 2809-2820

出版社

SPRINGER
DOI: 10.1007/s11033-012-2296-2

关键词

Persimmon; PAs; Laccase gene; qRT-PCR; Promoter

资金

  1. Natural Science Foundation of China [31071771, 30921002]
  2. Specialized Research Fund for the Doctoral Program of Higher Education [200805041008]

向作者/读者索取更多资源

Proanthocyanidins (PAs, condensed tannins) are important health-promoting phytochemicals that are abundant in many plants. Oriental persimmon (Diospyros kaki Thunb.) is an excellent source of PAs because of its unique ability to accumulate large quantities of these compounds in its young fruit. There are two different spontaneous mutant phenotypes of oriental persimmons which lose their astringent taste naturally on the tree; while plants without these mutations remain rich in soluble PAs until the fruit fully ripened. The mutations are referred to as pollination-constant non-astringent genotypes named J-PCNA and C-PCNA, and are from Japan and China respectively. In this work we speculated that the loss of astringency in C-PCNA fruit is due to the soluble PAs transferred into insoluble upon polymerization, which was quite different from that of the J-PCNA. A DkLAC1 gene was isolated by the homology-based clone method. The predicted protein product of this gene showed that the DkLAC1 is a plant laccase which is phylogenetically related to the known enzyme AtLAC15 involved in the polymerization of PAs. Expression patterns of PAs biosynthetic genes associated with soluble PAs contents in three types of Oriental persimmons. Expression levels of DkLAC1 in C-PCNA type plants were linked with the reduction of soluble PAs in the flesh of the fruit. In addition the cis-elements in the DkLAC1 promoter regions indicated that the gene might also be regulated by the DkMYB4 as is seen with other well-known structural genes in Oriental persimmon. We conclude that DkLAC1 is potentially involved in PA polymerization in C-PCNA during normal ripening in C-PCNA persimmon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据