4.5 Article

Functional analysis of a rice late pollen-abundant UDP-glucose pyrophosphorylase (OsUgp2) promoter

期刊

MOLECULAR BIOLOGY REPORTS
卷 38, 期 7, 页码 4291-4302

出版社

SPRINGER
DOI: 10.1007/s11033-010-0553-9

关键词

Promoter; Pollen; Rice; UDP-glucose pyrophosphorylase; OsUgp2

资金

  1. National Natural Science Foundation of China [30370800]
  2. Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry

向作者/读者索取更多资源

OsUgp2, a rice UDP-glucose pyrophosphorylase gene, has previously been shown to preferentially express in maturing pollens and plays an important role in pollen starch accumulation. Here, a 1943 bp promoter fragment (P1943) of OsUgp2 was characterized by 5' deletion and gain-of-function experiments. P1943 and its 5' deletion derivatives (P1495, P1005, P665 and P159) were fused to GUS reporter gene and stably introduced into rice plants. Histochemical analyses of different tissues and pollens at different developmental stages of the transgenic plants showed that P1943 could only direct GUS expression in binucleate pollens. P1495 and P1005 could still drive GUS expression in binucleate pollens but at a lower level. On the other hand, neither P665 nor P159 transformant exhibited any GUS activity in pollens. Gain-of-function analyses showed that the region (-1005 to -665 relative to translation start site) combined with a minimal CaMV 35S promoter could direct GUS expression in pollens. Further analysis of 5' deletion truncated at -952, -847 and -740 delimited a 53 bp region (-1005 to -952) essential for pollen-specific expression. The 53 bp sequence contains two motifs of TTTCT and TTTC, which were known to be pollen-specific cis-elements. In addition, the same P1943-GUS fusion construct was introduced into tobacco to analyze its specificity in dicotyledon. Interestingly, the GUS expression pattern in transgenic tobacco was quite different from that in rice. High level of GUS expression was detected in mature pollens as well as leaves, roots, sepals and stigmas. These findings suggested a complicated transcriptional regulation of OsUgp2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据