4.4 Article

Systematic spatial mapping of proteins at exocytic and endocytic structures

期刊

MOLECULAR BIOLOGY OF THE CELL
卷 25, 期 13, 页码 2084-2093

出版社

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E14-02-0771

关键词

-

资金

  1. Intramural Research Program of the National Heart, Lung, and Blood Institute, National Institutes of Health

向作者/读者索取更多资源

Vesicular secretion (exocytosis) involves the release and then compensatory recycling of vesicle components through endocytosis. This fundamental cellular process is controlled by the coordinated assembly and interactions of dozens of proteins at the plasma membrane. Understanding the molecular composition of individual exocytic and endocytic structures and their organization across the plasma membrane is critical to understanding the behavior and regulation of these two cellular processes. Here we develop a high-resolution and high-throughput fluorescence imaging-based approach for the unbiased mapping of 78 proteins at single exocytic vesicles and endocytic structures in neuroendocrine PC12 cells. This analysis uses two-color single-frame images to provide a systems-level map of the steady-state distributions of proteins at individual exocytic and endocytic structures in the cell. Along with this quantitative map, we find that both calcium-regulated exocytic vesicles (dense core vesicles) and endocytic structures (clathrin-coated structures) and the proteins associated with these structures exhibit a random spatial distribution in unstimulated neuroendocrine PC12 cells. This approach is broadly applicable for quantitatively mapping the molecular composition and spatial organization of discrete cellular processes with central molecular hubs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据