4.4 Article

Three-dimensional ultrastructure of the septin filament network in Saccharomyces cerevisiae

期刊

MOLECULAR BIOLOGY OF THE CELL
卷 23, 期 3, 页码 423-432

出版社

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E11-10-0850

关键词

-

资金

  1. Jane Coffin Childs Postdoctoral Research Fellowship [61-1357]
  2. National Institutes of Health [GM86603, GM21841]

向作者/读者索取更多资源

Septins are conserved GTP-binding proteins involved in membrane compartmentalization and remodeling. In budding yeast, five mitotic septins localize at the bud neck, where the plasma membrane is enriched in phosphatidylinositol-4,5-bisphosphate (PtdIns4,5P(2)). We previously established the subunit organization within purified yeast septin complexes and how these hetero-octamers polymerize into filaments in solution and on PtdIns4,5P(2)-containing lipid monolayers. How septin ultrastructure in vitro relates to the septin-containing filaments observed at the neck in fixed cells by thin-section electron microscopy was unclear. A morphological description of these filaments in the crowded space of the cell is challenging, given their small cross section. To examine septin organization in situ, sections of dividing yeast cells were analyzed by electron tomography of freeze-substituted cells, as well as by cryo-electron tomography. We found networks of filaments both perpendicular and parallel to the mother-bud axis that resemble septin arrays on lipid monolayers, displaying a repeat pattern that mirrors the molecular dimensions of the corresponding septin preparations in vitro. Thus these in situ structures most likely represent septin filaments. In viable mutants lacking a single septin, in situ filaments are still present, although more disordered, consistent with other evidence that the in vivo function of septins requires filament formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据