4.4 Article

Heterotrimeric kinesin-II is necessary and sufficient to promote different stepwise assembly of morphologically distinct bipartite cilia in Drosophila antenna

期刊

MOLECULAR BIOLOGY OF THE CELL
卷 22, 期 6, 页码 769-781

出版社

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E10-08-0712

关键词

-

资金

  1. Tata Institute of Fundamental Research, Department of Atomic Energy

向作者/读者索取更多资源

Structurally diverse sensory cilia have evolved from primary cilia, a microtubule-based cellular extension engaged in chemical and mechanical sensing and signal integration. The diversity is often associated with functional specialization. The olfactory receptor neurons in Drosophila, for example, express three distinct bipartite cilia displaying different sets of olfactory receptors on them. Molecular description underlying their assembly and diversification is still incomplete. Here, we show that the branched and the slender olfactory cilia develop in two distinct step-wise patterns through the pupal stages before the expression of olfactory receptor genes in olfactory neurons. The process initiates with a thin procilium growth from the dendrite apex, followed by volume increment in successive stages. Mutations in the kinesin-II subunit genes either eliminate or restrict the cilia growth as well as tubulin entry into the developing cilia. Together with previous results, our results here suggest that heterotrimeric kinesin-II is the primary motor engaged in all type-I sensory cilia assembly in Drosophila and that the cilia structure diversity is achieved through additional transports supported by the motor during development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据