4.4 Article

CFTR-Adenylyl Cyclase I Association Responsible for UTP Activation of CFTR in Well-Differentiated Primary Human Bronchial Cell Cultures

期刊

MOLECULAR BIOLOGY OF THE CELL
卷 21, 期 15, 页码 2639-2648

出版社

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E09-12-1004

关键词

-

资金

  1. National Institutes of Health [HL73856, DK35124, DK86125, EB00415, EY13574, DK72517]
  2. Cystic Fibrosis Foundation

向作者/读者索取更多资源

Chloride secretion by airway epithelial cells is defective in cystic fibrosis (CF). The conventional paradigm is that CFTR is activated through cAMP and protein kinase A (PKA), whereas the Ca2+-activated chloride channel (CaCC) is activated by Ca2+ agonists like UTP. We found that most chloride current elicited by Ca2+ agonists in primary cultures of human bronchial epithelial cells is mediated by CFTR by a mechanism involving Ca2+ activation of adenylyl cyclase I (AC1) and cAMP/ PKA signaling. Use of selective inhibitors showed that Ca2+ agonists produced more chloride secretion from CFTR than from CaCC. CFTR-dependent chloride secretion was reduced by PKA inhibition and was absent in CF cell cultures. Ca2+ agonists produced cAMP elevation, which was blocked by adenylyl cyclase inhibition. AC1, a Ca2+/calmodulin-stimulated adenylyl cyclase, colocalized with CFTR in the cell apical membrane. RNAi knockdown of AC1 selectively reduced UTP-induced cAMP elevation and chloride secretion. These results, together with correlations between cAMP and chloride current, suggest that compartmentalized AC1-CFTR association is responsible for Ca2+/cAMP cross-talk. We further conclude that CFTR is the principal chloride secretory pathway in non-CF airways for both cAMP and Ca2+ agonists, providing a novel mechanism to link CFTR dysfunction to CF lung disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据