4.4 Article

A Receptor-associated Protein/Phosphatidylinositol 3-Kinase Pathway Controls Pseudopod Formation

期刊

MOLECULAR BIOLOGY OF THE CELL
卷 21, 期 6, 页码 936-945

出版社

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E09-03-0177

关键词

-

资金

  1. Chemical Sciences of the Netherlands Organization for Scientific Research (NWO-CW)
  2. Canadian Institutes of Health Research

向作者/读者索取更多资源

GbpD, a Dictyostelium discoideum guanine exchange factor specific for Rap1, has been implicated in adhesion, cell polarity, and chemotaxis. Cells overexpressing GbpD are flat, exhibit strongly increased cell-substrate attachment, and extend many bifurcated and lateral pseudopodia. Phg2, a serine/threonine-specific kinase, mediates Rap1-regulated cell-substrate adhesion, but not cell polarity or chemotaxis. In this study we demonstrate that overexpression of GbpD in pi3k1/2-null cells does not induce the adhesion and cell morphology phenotype. Furthermore we show that Rap1 directly binds to the Ras binding domain of PI3K, and overexpression of GbpD leads to strongly enhanced PIP3 levels. Consistently, upon overexpression of the PIP3-degradating enzyme PTEN in GbpD-overexpressing cells, the strong adhesion and cell morphology phenotype is largely lost. These results indicate that a GbpD/Rap/PI3K pathway helps control pseudopod formation and cell polarity. As in Rap-regulated pseudopod formation in Dictyostelium, mammalian Rap and PI3K are essential for determining neuronal polarity, suggesting that the Rap/PI3K pathway is a conserved module regulating the establishment of cell polarity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据