4.4 Article

Kinesin-8 from Fission Yeast: A Heterodimeric, Plus-End-directed Motor that Can Couple Microtubule Depolymerization to Cargo Movement

期刊

MOLECULAR BIOLOGY OF THE CELL
卷 20, 期 3, 页码 963-972

出版社

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E08-09-0979

关键词

-

资金

  1. NCRR NIH HHS [RR-000592, P41 RR000592] Funding Source: Medline
  2. NIGMS NIH HHS [R01 GM033787, GM-033787] Funding Source: Medline

向作者/读者索取更多资源

Fission yeast expresses two kinesin-8s, previously identified and characterized as products of the klp5(+) and klp6(+) genes. These polypeptides colocalize throughout the vegetative cell cycle as they bind cytoplasmic microtubules during interphase, spindle microtubules, and/or kinetochores during early mitosis, and the interpolar spindle as it elongates in anaphase B. Here, we describe in vitro properties of these motor proteins and some truncated versions expressed in either bacteria or Sf9 cells. The motor-plus-neck domain of Klp6p formed soluble dimers that cross-linked microtubules and showed both microtubule-activated ATPase and plus-end-directed motor activities. Full-length Klp5p and Klp6p, coexpressed in Sf9 cells, formed soluble heterodimers with the same activities. The latter recombinant protein could also couple microbeads to the ends of shortening microtubules and use energy from tubulin depolymerization to pull a load in the minus end direction. These results, together with the spindle localizations of these proteins in vivo and their requirement for cell viability in the absence of the Dam1/DASH kinetochore complex, support the hypothesis that fission yeast kinesin-8 contributes both to chromosome congression to the metaphase plate and to the coupling of spindle microtubules to kinetochores during anaphase A.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据