4.4 Article

Filamin A Regulates Caveolae Internalization and Trafficking in Endothelial Cells

期刊

MOLECULAR BIOLOGY OF THE CELL
卷 20, 期 21, 页码 4531-4540

出版社

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E08-10-0997

关键词

-

资金

  1. National Institutes of Health, National Heart, Lung and Blood Institute [P01 HL60678, R01 HL71626, T32 HL072742]
  2. National Center for Research Resources [S10 RR022547-01A1]

向作者/读者索取更多资源

Transcytosis via caveolae is critical for maintaining vascular homeostasis by regulating the tissue delivery of macromolecules, hormones, and lipids. In the present study, we test the hypothesis that interactions between F-actin cross-linking protein filamin A and caveolin-1 facilitate the internalization and trafficking of caveolae. Small interfering RNA-mediated knockdown of filamin A, but not filamin B, reduced the uptake and transcytosis of albumin by similar to 35 and 60%, respectively, without altering the actin cytoskeletal structure or cell-cell adherens junctions. Mobility of both intracellular caveolin-1-green fluorescent protein (GFP)-labeled vesicles measured by fluorescence recovery after photobleaching and membrane-associated vesicles measured by total internal reflection-fluorescence microscopy was decreased in cells with reduced filamin A expression. In addition, in melanoma cells that lack filamin A (M2 cells), the majority of caveolin-1-GFP was localized on the plasma membrane, whereas in cells in which filamin A expression was reconstituted (A7 cells and M2 cells transfected with filamin A-RFP), caveolin-1-GFP was concentrated in intracellular vesicles. Filamin A association with caveolin-1 in endothelial cells was confirmed by cofractionation of these proteins in density gradients, as well as by coimmunoprecipitation. Moreover, this interaction was enhanced by Src activation, associated with increased caveolin-1 phosphorylation, and blocked by Src inhibition. Taken together, these data suggest that filamin A association with caveolin-1 promotes caveolae-mediated transport by regulating vesicle internalization, clustering, and trafficking.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据