4.4 Article

USP9X Enhances the Polarity and Self-Renewal of Embryonic Stem Cell-derived Neural Progenitors

期刊

MOLECULAR BIOLOGY OF THE CELL
卷 20, 期 7, 页码 2015-2029

出版社

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E08-06-0596

关键词

-

资金

  1. National Health and Medical Research Council

向作者/读者索取更多资源

The substrate-specific deubiquitylating enzyme USP9X is a putative stemness gene expressed in many progenitor cell populations. To test its function in embryonic stem cell-derived neural progenitor/stem cells, we expressed USP9X from a Nestin promoter. Elevated USP9X levels resulted in two phenomena. First, it produced a dramatically altered cellular architecture wherein the majority (>80%) of neural progenitors was arranged into radial clusters. These progenitors expressed markers of radial glial cells and were highly polarized with adherens junction proteins (N-cadherin, beta-catenin, and AF-6) and apical markers (Prominin1, atypical protein kinase C-zeta) as well as Notch, Numb, and USP9X itself, concentrated at the center. The cluster centers were also devoid of nuclei and so resembled the apical end-feet of radial progenitors in the neural tube. Second, USP9X overexpression caused a fivefold increase in the number of radial progenitors and neurons, in the absence of exogenous growth factors. 5-Bromo-2'-deoxyuridine labeling, as well as the examination of the brain lipid-binding protein: beta III-tubulin ratio, indicated that nestin-USP9X enhanced the self-renewal of radial progenitors but did not block their subsequent differentiation to neurons and astrocytes. nestin-USP9X radial progenitors reformed clusters after passage as single cells, whereas control cells did not, suggesting it aids the establishment of polarity. We propose that USP9X-induced polarization of these neural progenitors results in their radial arrangement, which provides an environment conducive for self-renewal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据