4.8 Article

Quantifying Selection Acting on a Complex Trait Using Allele Frequency Time Series Data

期刊

MOLECULAR BIOLOGY AND EVOLUTION
卷 29, 期 4, 页码 1187-1197

出版社

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msr289

关键词

adaptive molecular evolution; fitness effects of mutations; artificial selection

资金

  1. Wellcome Trust [098051, WT077192/Z/05/Z]
  2. CNRS
  3. ATIP-AVENIR
  4. National Science Foundation [NSF PHY05-51164]

向作者/读者索取更多资源

When selection is acting on a large genetically diverse population, beneficial alleles increase in frequency. This fact can be used to map quantitative trait loci by sequencing the pooled DNA from the population at consecutive time points and observing allele frequency changes. Here, we present a population genetic method to analyze time series data of allele frequencies from such an experiment. Beginning with a range of proposed evolutionary scenarios, the method measures the consistency of each with the observed frequency changes. Evolutionary theory is utilized to formulate equations of motion for the allele frequencies, following which likelihoods for having observed the sequencing data under each scenario are derived. Comparison of these likelihoods gives an insight into the prevailing dynamics of the system under study. We illustrate the method by quantifying selective effects from an experiment, in which two phenotypically different yeast strains were first crossed and then propagated under heat stress (Parts L, Cubillos FA, Warringer J, et al. [14 co-authors]. 2011. Revealing the genetic structure of a trait by sequencing a population under selection. Genome Res). From these data, we discover that about 6% of polymorphic sites evolve nonneutrally under heat stress conditions, either because of their linkage to beneficial (driver) alleles or because they are drivers themselves. We further identify 44 genomic regions containing one or more candidate driver alleles, quantify their apparent selective advantage, obtain estimates of recombination rates within the regions, and show that the dynamics of the drivers display a strong signature of selection going beyond additive models. Our approach is applicable to study adaptation in a range of systems under different evolutionary pressures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据