4.8 Article

Adaptation and Constraint at Toll-Like Receptors in Primates

期刊

MOLECULAR BIOLOGY AND EVOLUTION
卷 27, 期 9, 页码 2172-2186

出版社

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msq104

关键词

toll-like receptors; molecular evolution; adaptive evolution; functional constraint; primates

资金

  1. National Institute of Health

向作者/读者索取更多资源

Frequent positive selection is a hallmark of genes involved in the adaptive immune system of vertebrates, but the incidence of positive selection for genes underlying innate immunity in vertebrates has not been well studied. The toll-like receptors (TLRs) of the innate immune system represent the first line of defense against pathogens. TLRs lie directly at the host-environment interface, and they target microbial molecules. Because of this, they might be subject to frequent positive selection due to coevolutionary dynamics with their microbial counterparts. However, they also recognize conserved molecular motifs, and this might constrain their evolution. Here, we investigate the evolution of the ten human TLRs in the framework of these competing ideas. We studied rates of protein evolution among primate species and we analyzed patterns of polymorphism in humans and chimpanzees. This provides a window into TLR evolution at both long and short timescales. We found a clear signature of positive selection in the rates of substitution across primates in most TLRs. Some of the implicated sites fall in structurally important protein domains, involve radical amino acid changes, or overlap with polymorphisms with known clinical associations in humans. However, within species, patterns of nucleotide variation were generally compatible with purifying selection, and these patterns differed between humans and chimpanzees and between viral and nonviral TLRs. Thus, adaptive evolution at TLRs does not appear to reflect a constant turnover of alleles and instead might be more episodic in nature. This pattern is consistent with more ephemeral pathogen-host associations rather than with long-term coevolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据