4.8 Article

Hydrogen peroxide-induced gene expression across kingdoms:: A comparative analysis

期刊

MOLECULAR BIOLOGY AND EVOLUTION
卷 25, 期 3, 页码 507-516

出版社

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msm276

关键词

oxidative stress; hydrogen peroxide; microarray; comparative transcriptomics; Synechocystis; yeast; Arabidopsis; H. sapiens

向作者/读者索取更多资源

Cells react to oxidative stress conditions by launching a defense response through the induction of nuclear gene expression. The advent of microarray technologies allowed monitoring of oxidative stress-dependent changes of transcript levels at a comprehensive and genome-wide scale, resulting in a series of inventories of differentially expressed genes in different organisms. We performed a meta-analysis on hydrogen peroxide (H2O2)-induced gene expression in the cyanobacterium Synechocystis PCC 6803, the yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe, the land plant Arabidopsis thaliana, and the human HeLa cell line. The H2O2-induced gene expression in both yeast species was highly conserved and more similar to the A. thaliana response than that of the human cell line. Based on the expression characteristics of genuine antioxidant genes, we show that the antioxidant capacity of microorganisms and higher eukaryotes is differentially regulated. Four families of evolutionarily conserved eukaryotic proteins could be identified that were H2O2 responsive across kingdoms: DNAJ domain-containing heat shock proteins, small guanine triphosphate-binding proteins, Ca2+-dependent protein kinases, and ubiquitin-conjugating enzymes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据