4.2 Review

A review of recent experiments on step-to-step hand-off of the DNA intermediates in mammalian base excision repair pathways

期刊

MOLECULAR BIOLOGY
卷 45, 期 4, 页码 536-550

出版社

MAIK NAUKA/INTERPERIODICA/SPRINGER
DOI: 10.1134/S0026893311040091

关键词

DNA repair; DNA polymerase beta; single-nucleotide base excision repair (SN BER); long patch base excision repair (LP BER); flap endonuclease 1 (FEN1); AP endonuclease 1 (APE1); uracil-DNA glycosylase (UDG); 5 '-deoxyribose phosphate (5 '-dRP)

资金

  1. National Institutes of Health, National Institute of Environmental Health Sciences [Z01-ES050158, Z01-ES050159]

向作者/读者索取更多资源

The current working model for mammalian base excision repair involves two sub-pathways termed single-nucleotide base excision repair and long patch base excision repair that are distinguished by their repair patch sizes and the enzymes/co-factors involved. These base excision repair sub-pathways are designed to sequester the various DNA intermediates, passing them along from one step to the next without allowing these toxic molecules to trigger cell cycle arrest, necrotic cell death, or apoptosis. Although a variety of DNA-protein and protein-protein interactions are known for the base excision repair intermediates and enzymes/co-factors, the molecular mechanisms accounting for step-to-step coordination are not well understood. In this review, we explore the question of whether there is an actual step-to-step hand-off of the DNA intermediates during base excision repair in vitro. The results show that when base excision repair enzymes are pre-bound to the initial single-nucleotide base excision repair intermediate, the DNA is channeled from apurinic/apyrimidinic endonuclease 1 to DNA polymerase beta and then to DNA ligase. In the long patch base excision repair sub-pathway, where the 5'-end of the incised strand is blocked, the intermediate after polymerase beta gap filling is not channeled from polymerase beta to the subsequent enzyme, flap endonuclease 1. Instead, flap endonuclease 1 must recognize and bind to the intermediate in competition with other molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据