4.5 Article

Brain-Derived Neurotrophic Factor Induces Matrix Metalloproteinase 9 Expression in Neurons via the Serum Response Factor/c-Fos Pathway

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 33, 期 11, 页码 2149-2162

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.00008-13

关键词

-

资金

  1. Foundation for Polish Science, Homing Program
  2. Marie Curie International Reintegration Grant within the 7th European Community Framework Programme [230992]
  3. EpiTarGene

向作者/读者索取更多资源

Brain-derived neurotrophic factor (BDNF) plays a pivotal role in the regulation of the transcription of genes that encode proplasticity proteins. In the present study, we provide evidence that stimulation of rat primary cortical neurons with BDNF upregulates matrix metalloproteinase 9 (MMP-9) mRNA and protein levels and increases enzymatic activity. The BDNF-induced MMP-9 transcription was dependent on extracellular signal-regulated kinase 1/2 (ERK1/2) pathway and c-Fos expression. Overexpression of AP-1 dimers in neurons led to MMP-9 promoter activation, with the most potent being those that contained c-Fos, whereas knockdown of endogenous c-Fos by small hairpin RNA (shRNA) reduced BDNF-mediated MMP-9 transcription. Additionally, mutation of the proximal AP-1 binding site in the MMP-9 promoter inhibited the activation of MMP-9 transcription. BDNF stimulation of neurons induced binding of endogenous c-Fos to the proximal MMP-9 promoter region. Furthermore, as the c-Fos gene is a known target of serum response factor (SRF), we investigated whether SRF contributes to MMP-9 transcription. Inhibition of SRF and its cofactors by either overexpression of dominant negative mutants or shRNA decreased MMP-9 promoter activation. In contrast, MMP-9 transcription was not dependent on CREB activity. Finally, we showed that neuronal activity stimulates MMP-9 transcription in a tyrosine kinase receptor B (TrkB)-dependent manner.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据