4.5 Article

RBF Binding to both Canonical E2F Targets and Noncanonical Targets Depends on Functional dE2F/dDP Complexes

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 32, 期 21, 页码 4375-4387

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.00536-12

关键词

-

资金

  1. Tosteson Postdoctoral Fellowship Award
  2. DFG Forschungsstipendium
  3. National Cancer Institute
  4. National Institutes of Health [R01CA64402, GM053203]
  5. Ellison Medical Foundation [CA059267, R01GM097360]

向作者/读者索取更多资源

The retinoblastoma (RB) family of proteins regulate transcription. These proteins lack intrinsic DNA-binding activity but are recruited to specific genomic locations through interactions with sequence-specific DNA-binding factors. The best-known target of RB protein (pRB) is the E2F transcription factor; however, many other chromatin-associated proteins have been described that may allow RB family members to act at additional sites. To gain a perspective on the scale of E2F-dependent and E2F-independent functions, we generated genome-wide binding profiles of RBF1 and dE2F proteins in Drosophila larvae. RBF1 and dE2F2 associate with a large number of binding sites at genes with diverse biological functions. In contrast, dE2F1 was detected at a smaller set of promoters, suggesting that it overrides repression by RBF1/dE2F2 at a specific subset of targets. Approximately 15% of RBF1-bound regions lacked consensus E2F-binding motifs. To test whether RBF1 action at these sites is E2F independent, we examined dDP mutant larvae that lack any functional dE2F/dDP heterodimers. As measured by chromatin immunoprecipitation-microarray analysis (ChIP-chip), ChIP-quantitative PCR (qPCR), and cell fractionation, the stable association of RBF1 with chromatin was eliminated in dDP mutants. This requirement for dDP was seen at classic E2F-regulated promoters and at promoters that lacked canonical E2F-binding sites. These results suggest that E2F/DP complexes are essential for all genomic targeting of RBF1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据