4.5 Article

Inhibitory Phosphorylation of Cyclin-Dependent Kinase 1 as a Compensatory Mechanism for Mitosis Exit

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 31, 期 7, 页码 1478-1491

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.00891-10

关键词

-

资金

  1. Research Grants Council [662208, CA06/07.sc02]

向作者/读者索取更多资源

The current paradigm states that exit from mitosis is triggered by the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) acting in concert with an activator called CDC20. While this has been well established for a number of systems, the evidence of a critical role of CDC20 in somatic cells is not unequivocal. In this study, we reexamined whether mitotic exit can occur properly after CDC20 is depleted. Using single-cell analysis, we found that CDC20 depletion with small interfering RNAs (siRNAs) significantly impaired the degradation of APC/C substrates and delayed mitotic exit in various cancer cell lines. The recruitment of cyclin B1 to the core APC/C was defective after CDC20 downregulation. Nevertheless, CDC20-depleted cells were still able to complete mitosis, albeit requiring twice the normal time. Intriguingly, a high level of cyclin-dependent kinase 1 (CDK1)-inhibitory phosphorylation was induced during mitotic exit in CDC20-depleted cells. The expression of an siRNA-resistant CDC20 rescued both the mitotic exit delay and the CDK1-inhibitory phosphorylation. Moreover, the expression of a nonphosphorylatable CDK1 mutant or the downregulation of WEE1 and MYT1 abolished mitotic exit in CDC20-depleted cells. These findings indicate that, in the absence of sufficient APC/C activity, an alternative mechanism that utilized the classic inhibitory phosphorylation of CDK1 could mediate mitotic exit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据