4.5 Article

Thioredoxin Regulates Multiple Hydrogen Peroxide-Induced Signaling Pathways in Candida albicans

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 30, 期 19, 页码 4550-4563

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.00313-10

关键词

-

资金

  1. Wellcome Trust
  2. BBSRC
  3. Newcastle University
  4. ICAMB
  5. Chief Scientist Office [SCD/03] Funding Source: researchfish

向作者/读者索取更多资源

The ability of the major systemic fungal pathogen of humans, Candida albicans, to sense and respond to reactive oxygen species (ROS), such as H2O2 generated by the host immune system, is required for survival in the host. However, the intracellular signaling mechanisms underlying such responses are poorly understood. Here, we show that thioredoxin (Trx1), in addition to its antioxidant activity, plays a central role in coordinating the response of C. albicans to ROS by regulating multiple pathways. In particular, Trx1 function is important for H2O2-induced phosphorylation of the Hog1 stress-activated protein kinase and to reverse H2O2-induced oxidation and activation of the AP-1 like transcription factor Cap1. Furthermore, Trx1 regulates H2O2-induced hyperpolarized bud growth in a mechanism that involves activation of the Rad53 checkpoint kinase. Consistent with its key roles in responses to ROS, cells lacking Trx1 displayed significantly attenuated virulence in a murine model of C. albicans systemic infection. Collectively, our data indicate that Trx1 has a multifaceted role in H2O2 signaling and promotes C. albicans survival in the host.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据