4.5 Article

RecQL5 Promotes Genome Stabilization through Two Parallel Mechanisms-Interacting with RNA Polymerase II and Acting as a Helicase

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 30, 期 10, 页码 2460-2472

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.01583-09

关键词

-

资金

  1. National Institute on Aging [Z01: AG000657-09]
  2. National Institutes of Health
  3. Fanconi Anemia Research Fund

向作者/读者索取更多资源

The RecQL5 helicase is essential for maintaining genome stability and reducing cancer risk. To elucidate its mechanism of action, we purified a RecQL5-associated complex and identified its major component as RNA polymerase II (Pol II). Bioinformatics and structural modeling-guided mutagenesis revealed two conserved regions in RecQL5 as KIX and SRI domains, already known in transcriptional regulators for Pol II. The RecQL5-KIX domain binds both initiation (Pol IIa) and elongation (Pol IIo) forms of the polymerase, whereas the RecQL5-SRI domain interacts only with the elongation form. Fully functional RecQL5 requires both helicase activity and associations with the initiation polymerase, because mutants lacking either activity are partially defective in the suppression of sister chromatid exchange and resistance to camptothecin-induced DNA damage, and mutants lacking both activities are completely defective. We propose that RecQL5 promotes genome stabilization through two parallel mechanisms: by participation in homologous recombination-dependent DNA repair as a RecQ helicase and by regulating the initiation of Pol II to reduce transcription-associated replication impairment and recombination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据