4.5 Article

Mitochondrial HEP27 Is a c-Myb Target Gene That Inhibits Mdm2 and Stabilizes p53

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 30, 期 16, 页码 3981-3993

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.01284-09

关键词

-

资金

  1. Burroughs Wellcome Fund,
  2. National Cancer Institute
  3. Leukemia & Lymphoma Society
  4. NIH
  5. American Cancer Society
  6. NCI
  7. Breast Cancer Research Foundation

向作者/读者索取更多资源

The ever-expanding knowledge of the role of p53 in cellular metabolism, apoptosis, and cell cycle control has led to increasing interest in defining the stress response pathways that regulate Mdm2. In an effort to identify novel Mdm2 binding partners, we performed a large-scale immunoprecipitation of Mdm2 in the osteosarcoma U2OS cell line. One significant binding protein identified was Hep27, a member of the short-chain alcohol dehydrogenase/reductase (SDR) family of enzymes. Here, we demonstrate that the Hep27 preprotein contains an N-terminal mitochondrial targeting signal that is cleaved following mitochondrial import, resulting in mitochondrial matrix accumulation of mature Hep27. A fraction of the mitochondrial Hep27 translocates to the nucleus, where it binds to Mdm2 in the central domain, resulting in the attenuation of Mdm2-mediated p53 degradation. In addition, Hep27 is regulated at the transcriptional level by the proto-oncogene c-Myb and is required for c-Myb-induced p53 stabilization. Breast cancer gene expression analysis correlated estrogen receptor (ER) status with Hep27 expression and p53 function, providing a potential in vivo link between estrogen receptor signaling and p53 activity. Our data demonstrate a unique c-Myb-Hep27-Mdm2-p53 mitochondria-to-nucleus signaling pathway that may have functional significance for ER-positive breast cancers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据