4.5 Article

PML Activates Transcription by Protecting HIPK2 and p300 from SCFFbx3-Mediated Degradation

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 28, 期 23, 页码 7126-7138

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.00897-08

关键词

-

资金

  1. Ministry of Health, Labor and Welfare
  2. Ministry of Education, Culture, Sports, Science and Technology
  3. National Institute of Biomedical Innovation of Japan.

向作者/读者索取更多资源

PML, a nuclear protein, interacts with several transcription factors and their coactivators, such as HIPK2 and p300, resulting in the activation of transcription. Although PML is thought to achieve transcription activation by stabilizing the transcription factor complex, little is known about the underlying molecular mechanism. To clarify the role of PML in transcription regulation, we purified the PML complex and identified Fbxo3 (Fbx3), Skp1, and Cullin1 as novel components of this complex. Fbx3 formed SCFFbx3 ubiquitin ligase and promoted the degradation of HIPK2 and p300 by the ubiquitin-proteasome pathway. PML inhibited this degradation through a mechanism that unexpectedly did not involve inhibition of the ubiquitination of HIPK2. PML, Fbx3, and HIPK2 synergistically activated p53-induced transcription. Our findings suggest that PML stabilizes the transcription factor complex by protecting HIPK2 and p300 from SCFFbx3-induced degradation until transcription is completed. In contrast, the leukemia-associated fusion PML-RAR alpha induced the degradation of HIPK2. We discuss the roles of PML and PML-retinoic acid receptor alpha, as well as those of HIPK2 and p300 ubiquitination, in transcriptional regulation and leukemogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据