4.1 Article

Molecular basis of binding of the Plasmodium falciparum receptor BAEBL to erythrocyte receptor glycophorin C

期刊

MOLECULAR AND BIOCHEMICAL PARASITOLOGY
卷 168, 期 1, 页码 49-54

出版社

ELSEVIER
DOI: 10.1016/j.molbiopara.2009.06.006

关键词

Mutations; BAEBL; Glycophorin C; Sialic acid; Erythrocyte receptors

资金

  1. NIH, NIAID

向作者/读者索取更多资源

Plasmodium falciparum invades human erythrocytes by redundant pathways. Unlike Plasmodium vivax that has one Duffy Binding-Like (DBL) receptor, P. falciparum has four members of the DBL receptor family. Furthermore, one of these DBL genes, BAEBL, has polymorphisms at four amino acids in region 11; each polymorphism binds to a different erythrocyte receptor. One BAEBL variant (VSTK) binds specifically to erythrocyte glycophorin C and binds poorly to neuraminidase-treated erythrocytes. When the amino acid threonine (T121) in BAEBL (VSTK) is changed to a lysine (VSKK), it no longer requires sialic acid as a receptor. To explore the molecular basis of sialic acid binding, we modeled the structure of region 11 of BAEBL (VSTK) on the crystal structure of a related DBL receptor, region 11 of erythrocyte binding antigen-175 (EBA-175). Four charged amino acids, R52, R114, E54 and D125, are predicted to surround T121 in BAEBL (VSTK). They were individually mutated to alanine (R52A, R114A, E54A, and D125A) or lysine (R52K, R114K) and expressed on the surface of Chinese hamster ovary (CHO-K1) cells. BAEBL (VSTK) with mutations in R52 or R114 of BAEBL (VSTK) bound neuraminidase-treated erythrocytes. Unlike the arginine mutations, E54A and D125A still bound poorly to neuraminidase-treated erythrocytes. These findings suggest that the two arginine residues surrounding T121 are critical for the binding specificity of BAEBL (VSTK) to sialic acid and suggest a role for arginine in sialic acid binding independent of its negative charge. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据