4.7 Article

Deep Proteome Coverage Based on Ribosome Profiling Aids Mass Spectrometry-based Protein and Peptide Discovery and Provides Evidence of Alternative Translation Products and Near-cognate Translation Initiation Events

期刊

MOLECULAR & CELLULAR PROTEOMICS
卷 12, 期 7, 页码 1780-1790

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/mcp.M113.027540

关键词

-

资金

  1. IWT-Flanders
  2. Fund for Scientific Research, Flanders (Belgium) [G. 0440.10]

向作者/读者索取更多资源

An increasing number of studies involve integrative analysis of gene and protein expression data, taking advantage of new technologies such as next-generation transcriptome sequencing and highly sensitive mass spectrometry (MS) instrumentation. Recently, a strategy, termed ribosome profiling (or RIBO-seq), based on deep sequencing of ribosome-protected mRNA fragments, indirectly monitoring protein synthesis, has been described. We devised a proteogenomic approach constructing a custom protein sequence search space, built from both Swiss-Prot-and RIBO-seq-derived translation products, applicable for MS/MS spectrum identification. To record the impact of using the constructed deep proteome database, we performed two alternative MS-based proteomic strategies as follows: (i) a regular shotgun proteomic and (ii) an N-terminal combined fractional diagonal chromatography (COFRADIC) approach. Although the former technique gives an overall assessment on the protein and peptide level, the latter technique, specifically enabling the isolation of N-terminal peptides, is very appropriate in validating the RIBO-seq-derived (alternative) translation initiation site profile. We demonstrate that this proteogenomic approach increases the overall protein identification rate 2.5% (e. g. new protein products, new protein splice variants, single nucleotide polymorphism variant proteins, and N-terminally extended forms of known proteins) as compared with only searching UniProtKB-SwissProt. Furthermore, using this custom database, identification of N-terminal COFRADIC data resulted in detection of 16 alternative start sites giving rise to N-terminally extended protein variants besides the identification of four translated upstream ORFs. Notably, the characterization of these new translation products revealed the use of multiple near-cognate (non-AUG) start codons. As deep sequencing techniques are becoming more standard, less expensive, and widespread, we anticipate that mRNA sequencing and especially custom-tailored RIBO-seq will become indispensable in the MS-based protein or peptide identification process. The underlying mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000124.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据