4.7 Article

Discovery of O-GlcNAc-modified Proteins in Published Large-scale Proteome Data

期刊

MOLECULAR & CELLULAR PROTEOMICS
卷 11, 期 10, 页码 843-850

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/mcp.M112.019463

关键词

-

资金

  1. Studienstiftung des deutschen Volkes e. V.
  2. Faculty Graduate Center Weihenstephan of TUM Graduate School at the Technische Universitat Munchen, Germany

向作者/读者索取更多资源

The attachment of N-acetylglucosamine to serine or threonine residues (O-GlcNAc) is a post-translational modification on nuclear and cytoplasmic proteins with emerging roles in numerous cellular processes, such as signal transduction, transcription, and translation. It is further presumed that O-GlcNAc can exhibit a site-specific, dynamic and possibly functional interplay with phosphorylation. O-GlcNAc proteins are commonly identified by tandem mass spectrometry following some form of biochemical enrichment. In the present study, we assessed if, and to which extent, O-GlcNAc-modified proteins can be discovered from existing large-scale proteome data sets. To this end, we conceived a straightforward O-GlcNAc identification strategy based on our recently developed Oscore software that automatically analyzes tandem mass spectra for the presence and intensity of O-GlcNAc diagnostic fragment ions. Using the Oscore, we discovered hundreds of O-GlcNAc peptides not initially identified in these studies, and most of which have not been described before. Merely re-searching this data extended the number of known O-GlcNAc proteins by almost 100 suggesting that this modification exists even more widely than previously anticipated and the modification is often sufficiently abundant to be detected without enrichment. However, a comparison of O-GlcNAc and phospho-identifications from the very same data indicates that the O-GlcNAc modification is considerably less abundant than phosphorylation. The discovery of numerous doubly modified peptides (i.e. peptides with one or multiple O-GlcNAc or phosphate moieties), suggests that O-GlcNAc and phosphorylation are not necessarily mutually exclusive, but can occur simultaneously at adjacent sites. Molecular & Cellular Proteomics 11: 10.1074/mcp. M112.019463, 843-850, 2012.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据