4.7 Article

The Subunit Composition of Mitochondrial NADH:Ubiquinone Oxidoreductase (Complex I) From Pichia pastoris

期刊

MOLECULAR & CELLULAR PROTEOMICS
卷 9, 期 10, 页码 2318-2326

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/mcp.M110.001255

关键词

-

资金

  1. MRC [MC_U105663141] Funding Source: UKRI
  2. Medical Research Council [MC_U105663141] Funding Source: Medline
  3. Medical Research Council [MC_U105663141] Funding Source: researchfish

向作者/读者索取更多资源

Respiratory complex I (NADH: quinone oxidoreductase) is an entry point to the electron transport chain in the mitochondria of many eukaryotes. It is a large, multisubunit enzyme with a hydrophilic domain in the matrix and a hydrophobic domain in the mitochondrial inner membrane. Here we present a comprehensive analysis of the protein composition and post-translational modifications of complex I from Pichia pastoris, using a combination of proteomic and bioinformatic approaches. Forty-one subunits were identified in P. pastoris complex I, comprising the 14 core (conserved) subunits and 27 supernumerary subunits; seven of the core subunits are mitochondrial encoded. Three of the supernumerary subunits (named NUSM, NUTM, and NUUM) have not been observed previously in any species of complex I. However, homologues to all three of them are present in either Yarrowia lipolytica or Pichia angusta complex I. P. pastoris complex I has 39 subunits in common with Y. lipolytica complex I, 37 in common with N. crassa complex I, and 35 in common with the bovine enzyme. The mitochondrial encoded subunits (translated by the mold mitochondrial genetic code) retain their N-alpha-formyl methionine residues. At least eight subunits are N-alpha-acetylated, but the N-terminal modifications of the nuclear encoded subunits are not well-conserved. A combination of two methods of protein separation (SDS-PAGE and HPLC) and three different mass spectrometry techniques (peptide mass fingerprinting, tandem MS and molecular mass measurements) were required to define the protein complement of P. pastoris complex I. This requirement highlights the need for inclusive and comprehensive strategies for the characterization of challenging membrane-bound protein complexes containing both hydrophilic and hydrophobic components. Molecular & Cellular Proteomics 9:2318-2326, 2010.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据