4.7 Article

Exploring Antibody Recognition of Sequence Space through Random-Sequence Peptide Microarrays

期刊

MOLECULAR & CELLULAR PROTEOMICS
卷 10, 期 3, 页码 -

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/mcp.M110.000786

关键词

-

资金

  1. Arizona TRIF funds
  2. DoD

向作者/读者索取更多资源

A universal platform for efficiently mapping antibody epitopes would be of great use for many applications, ranging from antibody therapeutic development to vaccine design. Here we tested the feasibility of using a random peptide microarray to map antibody epitopes. Although peptide microarrays are physically constrained to similar to 10(4) peptides per array, compared with 108 permitted in library panning approaches such as phage display, they enable a much more high though put and direct measure of binding. Long (20 mer) random sequence peptides were chosen for this study to look at an unbiased sampling of sequence space. This sampling of sequence space is sparse, as an exact epitope sequence is unlikely to appear. Commercial monoclonal antibodies with known linear epitopes or polyclonal antibodies raised against engineered 20-mer peptides were used to evaluate this array as an epitope mapping platform. Remarkably, peptides with the most sequence similarity to known epitopes were only slightly more likely to be recognized by the antibody than other random peptides. We explored the ability of two methods singly and in combination to predict the actual epitope from the random sequence peptides bound. Though the epitopes were not directly evident, subtle motifs were found among the top binding peptides for each antibody. These motifs did have some predictive ability in searching for the known epitopes among a set of decoy sequences. The second approach using a windowing alignment strategy, was able to score known epitopes of monoclonal antibodies well within the test dataset, but did not perform as well on polyclonals. Random peptide microarrays of even limited diversity may serve as a useful tool to prioritize candidates for epitope mapping or antigen identification. Molecular & Cellular Proteomics 10: 10.1074/mcp.M110.000786, 1-10, 2011.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据