4.7 Article

High-Mannose Glycans are Elevated during Breast Cancer Progression

期刊

MOLECULAR & CELLULAR PROTEOMICS
卷 10, 期 1, 页码 -

出版社

ELSEVIER
DOI: 10.1074/mcp.M110.002717

关键词

-

资金

  1. National Institutes of Health [R01GM049077]
  2. NATIONAL CANCER INSTITUTE [P30CA093373] Funding Source: NIH RePORTER
  3. NATIONAL CENTER FOR RESEARCH RESOURCES [K26RR024037] Funding Source: NIH RePORTER
  4. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM049077] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Alteration in glycosylation has been observed in cancer. However, monitoring glycosylation changes during breast cancer progression is difficult in humans. In this study, we used a well-characterized transplantable breast tumor mouse model, the mouse mammary tumor virus-polyoma middle T antigen, to observe early changes in glycosylation. We have previously used the said mouse model to look at O-linked glycosylation changes with breast cancer. In this glycan biomarker discovery study, we examined N-linked glycan variations during breast cancer progression of the mouse model but this time doubling the number of mice and blood draw points. N-glycans from total mouse serum glycoproteins were profiled using matrix-assisted laser desorption/ionization Fourier transform-ion cyclotron resonance mass spectrometry at the onset, progression, and removal of mammary tumors. We observed four N-linked glycans, m/z 1339.480 (Hex(3)HexNAc), 1485.530 (Hex(3)HexNAc(4)Fuc), 1809.639 (Hex(5)HexNAc(4)Fuc), and 1905.630 (Man 9), change in intensity in the cancer group but not in the control group. In a separate study, N-glycans from total human serum glycoproteins of breast cancer patients and controls were also profiled. Analysis of human sera using an internal standard showed the alteration of the low-abundant high-mannose glycans, m/z 1419.475, 1581.528, 1743.581, 1905.634 (Man(6-9)), in breast cancer patients. A key observation was the elevation of a high-mannose type glycan containing nine mannoses, Man(9), m/z 1905.630 in both mouse and human sera in the presence of breast cancer, suggesting an incompletion of the glycosylation process that normally trims back Man(9) to produce complex and hybrid type oligosaccharides. Molecular & Cellular Proteomics 10: 10.1074/mcp.M110.002717, 1-9, 2011.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据