4.7 Article

Large scale screening for novel Rab effectors reveals unexpected broad Rab binding specificity

期刊

MOLECULAR & CELLULAR PROTEOMICS
卷 7, 期 6, 页码 1031-1042

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/mcp.M700569-MCP200

关键词

-

资金

  1. Grants-in-Aid for Scientific Research [20113006] Funding Source: KAKEN

向作者/读者索取更多资源

Small GTPase Rab is generally thought to control intracellular membrane trafficking through interaction with specific effector molecules. Because of the large number of Rab isoforms in mammals, however, the effectors of most of the mammalian Rabs have never been identified, and the Rab binding specificity of the Rab effectors previously reported has never been thoroughly investigated. In this study we systematically screened for novel Rab effectors by a yeast two-hybrid assay with 28 different mouse or human Rabs (Rab1-30) as bait and identified 27 Rab-binding proteins, including 19 novel ones. We further investigated their Rab binding specificity by a yeast two-hybrid assay with a panel of 60 different GTP-locked mouse or human Rabs. Unexpectedly most (17 of 27) of the Rab-binding proteins we identified exhibited broad Rab binding specificity and bound multiple Rab isoforms. As an example, inositol-polyphosphate 5-phosphatase OCRL (oculocerebrorenal syndrome of Lowe) bound the greatest number of Rabs (i.e. 16 distinct Rabs). Others, however, specifically recognized only a single Rab isoform or only two closely related Rab isoforms. The interaction of eight of the novel Rab-binding proteins identified (e. g. INPP5E and Cog4) with a specific Rab isoform was confirmed by co-immunoprecipitation assay and/or colocalization analysis in mammalian cell cultures, and the novel Rab2B-binding domain of Golgi-associated Rab2B interactor (GARI) and GARI-like proteins was identified by deletion and homology search analyses. The findings suggest that most Rab effectors (or Rab-binding proteins) regulate intracellular membrane trafficking through interaction with several Rab isoforms rather than through a single Rab isoform.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据