4.4 Article

Quantification of dislocation structure heterogeneity in deformed polycrystals by EBSD

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0965-0393/20/2/024007

关键词

-

资金

  1. US National Science Foundation [DMR 1003004]

向作者/读者索取更多资源

Plastic deformation in polycrystalline materials involves a complex interaction of dislocations with defects in the lattice. The geometrically necessary component of the dislocation density can be quantified to some extent using data obtained from automated electron backscatter diffraction scans over planar regions or volumes using the three-dimensional imaging techniques that are currently available. Reliable measurements require that the step size of the orientation data used in determination of geometrically necessary dislocation densities be on the scale of the microstructural information. Measurements were performed in deformed Cu, Al and steel specimens. Geometrically necessary dislocation density in Cu deformed 10% in compression was about 15-30% of the overall estimated dislocation density. Measurements in Al demonstrate that three-dimensional estimates are on the order of 1.2-2 times the values obtained from 2D measurements on the same structures. Analysis of interstitial free steel specimens shows an increase in average geometrically necessary dislocation density by an order of magnitude for specimens deformed to 12% tensile deformation elongation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据