4.4 Article

Density functional theory calculations of defect energies using supercells

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0965-0393/17/8/084003

关键词

-

资金

  1. Goran Gustafsson Foundation
  2. Swedish Foundation for Strategic Research (SSF)
  3. Swedish Research Council

向作者/读者索取更多资源

Reliable calculations of defect properties may be obtained with density functional theory (DFT) using the supercell approximation. We systematically review the known sources of error and suggest how to perform calculations of defect properties in order to minimize errors. We argue that any analytical error-correction scheme relying on electrostatic considerations alone is not appropriate to derive reliable defect formation energies, certainly not for relaxed geometries. Instead we propose finite size scaling of the calculated defect formation energies, and compare the application of this with both fully converged and 'Gamma' (Gamma) point only k-point integration. We provide a recipe for practical DFT calculations which will help to obtain reliable defect formation energies and demonstrate it using examples from III-V semiconductors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据