4.7 Article

Reductive dissolution of ferric iron minerals: A new approach for bio-processing nickel laterites

期刊

MINERALS ENGINEERING
卷 24, 期 7, 页码 620-624

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.mineng.2010.09.005

关键词

Acidithiobacillus ferrooxidans; Bioleaching; Goethite; Laterites; Nickel; Reduction

资金

  1. BHP Billiton
  2. Royal Society (UK)

向作者/读者索取更多资源

Nickel laterites represent the major ore reserves of this base metal present in the lithosphere. However, processing these ores by conventional technologies involves considerable energy or reagent expenditure and consequently is less cost-effective than extracting nickel from sulfide ores. Biological options, using metal-complexing organic acids and mineral acids generated by fungi and bacteria, have been investigated but generally found to be ineffective in terms of extraction dynamics or yields. We have examined the possibility of using bacteria that can bring about the reductive dissolution of ferric iron minerals and thereby facilitate the extraction of nickel from a lateritic ore at relatively low (<30-45 degrees C) temperatures. Four species of iron-reducing acidophilic bacteria were screened for their abilities to solubilise nickel from a limonitic laterite ore in which the major iron mineral present was goethite. One of these (Acidithiobacillus ferrooxidans) was selected for further study only the basis of it being able to use a cost-effective energy source (elemental sulfur) to mediate the dissolution of goethite at mildly acidic conditions (pH < 2). Cultures were set up in 2 L bioreactors, maintained at pH 1.8 (+/-0.1) and 30 degrees C. and initially aerated (to promote growth of the bacteria on sulfur) and then switched to anaerobic conditions when nickel laterite ore (crushed to <6 mm, with a nickel grade of 0.5%) was added. Over 70% of the nickel present in the ore was solubilised within 14 days, and solubilised metals remained in solution due to the low pH of the leachate. In contrast, only 10% of the nickel was solubilised (by non-reductive acid dissolution) when the cultures were continuously aerated. The results suggest that biological processing of limonitic nickel laterites is technically feasible and, more generically, that reductive dissolution can be used to bioprocess ferric oxide mineral ores. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据