4.4 Article

Dose response of angiogenesis to basic fibroblast growth factor in rat corneal pocket assay: II. Numerical simulations

期刊

MICROVASCULAR RESEARCH
卷 75, 期 1, 页码 16-24

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.mvr.2007.09.005

关键词

mathematical modeling; diffusion; vascular network; vascular density

向作者/读者索取更多资源

Angiogenesis involves interactions among various molecules and cells. To understand the complexity of interactions, we developed a mathematical model to numerically simulate angiogenesis induced by basic fibroblast growth factor (bFGF) in the corneal pocket assay. The model considered interstitial transport of bFGF, cellular uptake of bFGF, and dynamics of vessel growth. The model was validated by comparing simulated vascular networks, induced by bFGF at three different doses: 5 ng, 15 ng, and 50 ng, with experimental data obtained in the first part of the study, in terms of migration distance of vascular network, total vessel length, and number of vessels. The model was also used to simulate growth dynamics of vascular networks as well as spatial and temporal distribution of bFGF, which could not be measured experimentally. Taken together, results of the study suggested that the coupling between diffusion and cellular uptake of bFGF was critical for determining structures of vascular networks and that the mathematical model was appropriate for simulation of angiogenesis in the cornea. (c) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据