4.5 Article

Examination of a Polycrystalline Thin-Film Model to Explore the Relation between Probe Size and Structural Correlation Length in Fluctuation Electron Microscopy

期刊

MICROSCOPY AND MICROANALYSIS
卷 18, 期 1, 页码 241-253

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S1431927611012517

关键词

amorphous silicon; continuous random network; fluctuation electron microscopy; pair distribution function; structural correlation length; supervariance

资金

  1. Leverhulme Trust
  2. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-PS02-09ER09-01]
  3. Advanced Photon Source at Argonne National Laboratory, U.S. Department of Energy [DE-AC02-06CH11357]

向作者/读者索取更多资源

We examine simulated electron microdiffraction patterns from models of thin polycrystalline silicon. The models are made by a Voronoi tessellation of random points in a box. The Voronoi domains are randomly selected to contain either a randomly-oriented cubic crystalline grain or a region of continuous random network material. The microdiffraction simulations from coherent probes of different widths are computed at the ideal kinematical limit, ignoring inelastic and multiple scattering. By examining the normalized intensity variance that is obtained in fluctuation electron microscopy experiments, we confirm that intensity fluctuations increase monotonically with the percentage of crystalline grains in the material. However, anomalously high variance is observed for models that have 100% crystalline grains with no imperfections. We confirm that the reduced normalized variance, V(k, R) 1, that is associated with four-body correlations at scattering vector k, varies inversely with specimen thickness. Further, for probe sizes R larger than the mean grain size, we confirm that the reduced normalized variance obeys the predicted form given by Gibson et al. [Ultramicroscopy, 83, 169-178 (2000)] for the kinematical coherent scattering limit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据