4.7 Article

Fluoride removal by ordered and disordered mesoporous aluminas

期刊

MICROPOROUS AND MESOPOROUS MATERIALS
卷 197, 期 -, 页码 156-163

出版社

ELSEVIER
DOI: 10.1016/j.micromeso.2014.06.010

关键词

Mesoporous alumina; Fluoride adsorption; Equilibrium isotherm; Kinetics

资金

  1. National Natural Science Foundation of China [51371162, 51344007]
  2. National Basic Research Program of China [2011CB933700]

向作者/读者索取更多资源

Highly ordered and disordered (MA-n) mesoporous aluminas with excellent fluoride adsorption performance have been successfully developed. The physicochemical and adsorption properties were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption-desorption isotherms and fluoride removal experiments. Highly ordered mesoporous structure (OMA) was produced by using aluminum metal organic as precursor and wormlike disordered mesoporous structure (MA-n, MA-cl) was synthesized from inorganic aluminum salt precursors. The synthesized mesoporous alumina with a large pore size distribution of 7-14 nm and large surface areas in the range of 163-338 m(2)/g are beneficial for transport of solution in interconnected mesoporous channels and the fluoride ion was anchored on plenty of surface hydroxyl groups which provide high fluoride adsorption capacity and efficiency. Adsorption kinetics was described by pseudo-second-order, pseudo-first-order and intra-particle pore diffusion models, while, their adsorption equilibrium isotherms were described reasonably well by Langmuir model. Maximum fluoride adsorption capacities of OMA-400, OMA-850 and MA-n were 135,91 and 95 mg/g, respectively, which are higher than many reported alumina based adsorbents. Due to the ordered mesoporous structure which decreases the liquid transfer resistance, the OMA-400 showed extremely faster adsorption kinetics with a removal of 90% of F- within 20 min at an optimal pH of 6. Presence of other anions like SO42-, NO3-, Cl- and HCO3- effect on fluoride removal efficiency and desorption study of OMA-400 and OMA-850 were also determined and compared. (C) 2014 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据