4.7 Article

Expanded view of zeolite structures and their variability based on layered nature of 3-D frameworks

期刊

MICROPOROUS AND MESOPOROUS MATERIALS
卷 142, 期 1, 页码 32-36

出版社

ELSEVIER
DOI: 10.1016/j.micromeso.2010.11.007

关键词

MCM-22 zeolite family; Layered structure; X-ray powder diffraction; Zeolite structure; MWW structure

向作者/读者索取更多资源

Historically, zeolites have been formed and viewed as continuous, 3-dimensional, 4-connected frameworks. Originally these appeared not to be amenable to non-destructive structural modification post-synthesis. By contrast, the synthesis of zeolite MCM-22 followed an indirect pathway to framework formation via a layered precursor MCM-22P comprising stacked MCM-22 monolayers. Gradually other spatial arrangements of these layers have been synthesized, accidentally or by post-synthesis modification, such as: pillared, delaminated, stabilized in expanded form and disordered. MCM-22 can be formed by the conventional direct assembly in 3-D pathway as well (i.e., MCM-49). Subsequently, other frameworks have been recognized as having the layered precursor including well known classical zeolites ferrierite, sodalite and recently ZSM-5. This new approach has been suggested to extend to most, possibly all zeolites. An expanded view of zeolites structures is presented in an integrated scheme based on various materials identified with MWW structure. It is shown that X-ray powder diffraction can be used to unequivocally identify various types of structures generated by different layer arrangements. This is based on self-consistent detailed analysis of selected peaks that reflect inter-layer distances and ordering. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据