4.3 Article

Effect of Mental Arithmetic on heart rate responses during Parabolic Flights: the Barcelona Zero-G Challenge

期刊

MICROGRAVITY SCIENCE AND TECHNOLOGY
卷 26, 期 1, 页码 11-16

出版社

SPRINGER
DOI: 10.1007/s12217-014-9365-1

关键词

Mental arithmetic; Parabolic flights; Chronocord; Heart rate; Heart rate variability; Barcelona Sabadell airport

资金

  1. Aeroclub Barcelona-Sabadell
  2. BAIE (Barcelona Aeronautics and Space cluster)

向作者/读者索取更多资源

When an astronaut transitions from a low to high gravitational environment, fluid shifts from the head towards the feet resulting in orthostatic intolerance and syncope. Ground based experiments have shown that by stimulating the cardiovascular system via simple mental stressors, syncope can be delayed, potentially enabling astronauts to reach assistance before loss of consciousness. However, the effect of mental stressors on the stimulation of the cardiovascular system in gravitational environments different than that of Earth's is unknown. As such, this paper investigates the effects that mental stressors under various gravitational environments. To do this, a pilot study was performed in which two participants were flown on two separate parabolic flights that simulated hyper and hypogravity conditions. The plane used was an Aerobatic Single-Engine Cap-10B plane (twin seater), and each participant executed 11 parabolas. The participants were the winners of the Barcelona Zero-G Challenge 2011 organized by UPC Universitat PolitScnica de Catalunya-BarcelonaTech and Aeroclub Barcelona-Sabadell. Measurements were made of the participants' hemodynamic and autonomic response throughout the parabolas, using a Chronocord: high precision HRV monitor. Comparisons of the baseline response without mental stressors, and the response with mental stressors during different gravitational loading conditions were made. It was observed that there is an increase in cardiovascular activity during hypo- and hyper-gravity when performing mental arithmetic. Our results show that the twin seater aerobatic single engine CAP-10B aicraft can provide changing gravitational loading conditions for enough periods to study changes in physiological systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据