4.5 Article

A magnetic bead-based DNA extraction and purification microfluidic device

期刊

MICROFLUIDICS AND NANOFLUIDICS
卷 11, 期 2, 页码 157-165

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10404-011-0782-9

关键词

Magnetic beads; Magnetic mixing; DNA extraction; Microfluidic chip; Solid-phase extraction

向作者/读者索取更多资源

This article introduces a novel magnetic bead-based DNA extraction and purification device using active magnetic mixing approach. Mixing and separation steps are performed using functionalised superparamagnetic beads suspended in cell lysis buffer in a circular chamber that is sandwiched between two external magnetic coils. Non-uniform nature of magnetic field causes temporal and spatial distribution of beads within the chamber. This process efficiently mixes the lysis buffer and whole blood in order to extract DNA from target cells. Functionalized surface of the magnetic beads then attract the exposed DNA molecules. Finally, DNA-attached magnetic beads are attracted to the bottom of the chamber by activating the bottom magnetic coil. DNA molecules are extracted from magnetic beads by washing and re-suspension processes. In this study, a circular PMMA microchamber, 25 mu L in volume, 500 mu m in depth and 8 mm in diameter was fabricated to purify DNA from spiked bacterial cell cultures into the whole blood sample using Promega Magazorb DNA extraction kit. The lysis efficiency was evaluated using a panel of Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacterial cells cultures into the blood sample to achieve approximately 100,000 copy levels inside the chip. Manufacturer's standard extraction protocol was modified to a more simplified process suitable for chip-based extraction. The lysis step was performed using 5 min incubation at 56 A degrees C followed by 5 min incubation at room temperature for binding process. Temperature rise was generated and maintained by the same external magnetic coils used for active mixing. The yield/purity and recovery levels of the extracted DNA were evaluated using quantitative UV spectrophotometer and real-time PCR assay, respectively. Real-time PCR results indicated efficient chip-based bacterial DNA extraction using modified extraction protocol comparable to the standard bench-top extraction process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据