4.5 Article

A simple and cost-effective method for fabrication of integrated electronic-microfluidic devices using a laser-patterned PDMS layer

期刊

MICROFLUIDICS AND NANOFLUIDICS
卷 12, 期 5, 页码 751-760

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10404-011-0917-z

关键词

Microfluidics; Electronics integration; PDMS; Laser ablation; Transfer bonding; Dielectrophoresis

资金

  1. Australian Endeavour Research Fellowship [1994_2011]
  2. University of Wollongong through a UIC

向作者/读者索取更多资源

We report a simple and cost-effective method for fabricating integrated electronic-microfluidic devices with multilayer configurations. A CO2 laser plotter was employed to directly write patterns on a transferred polydimethylsiloxane (PDMS) layer, which served as both a bonding and a working layer. The integration of electronics in microfluidic devices was achieved by an alignment bonding of top and bottom electrode-patterned substrates fabricated with conventional lithography, sputtering and lift-off techniques. Processes of the developed fabrication method were illustrated. Major issues associated with this method as PDMS surface treatment and characterization, thickness-control of the transferred PDMS layer, and laser parameters optimization were discussed, along with the examination and testing of bonding with two representative materials (glass and silicon). The capability of this method was further demonstrated by fabricating a microfluidic chip with sputter-coated electrodes on the top and bottom substrates. The device functioning as a microparticle focusing and trapping chip was experimentally verified. It is confirmed that the proposed method has many advantages, including simple and fast fabrication process, low cost, easy integration of electronics, strong bonding strength, chemical and biological compatibility, etc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据