4.5 Article

Laser microstructuration of three-dimensional enzyme reactors in microfluidic channels

期刊

MICROFLUIDICS AND NANOFLUIDICS
卷 10, 期 3, 页码 685-690

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10404-010-0698-9

关键词

Laser microfabrication; Two-photon absorption; Microreactors; Enzymatic activity; Microfluidic channels

资金

  1. Agence Universitaire de la Francophonie (AUF)

向作者/读者索取更多资源

In this paper, we report on the fabrication of three-dimensional (3D) enzymatic microreactors within polydimethylsiloxane microfluidic channels through a photocrosslinking mechanism mediated by the two-photon absorption process at the focal point of pulse lasers, i.e., a sub-nanosecond Nd:YAG microlaser or a femtosecond Ti:Sapphire laser. This approach allows the building of localized 3D trypsin structures with submicron resolution. The fabrication of two different trypsin structures was successfully demonstrated using Eosin Y and Flavin Adenine Dinucleotide as biological photosensitizers: (i) arrays of 3D cylindrical rows and (ii) 3D woodpile structure. The enzymatic activity of the fabricated structures was evaluated by fluorescence spectroscopy using BODIPY FL casein as fluorogenic substrate. The real time investigation of the peptide cleavage into the microfluidic channel demonstrated that the fabricated trypsin microstructures maintain their catalytic activity. This approach opens up the way to complex multistep enzymatic reactions in well-localized regions of microfluidic devices, with great importance in health screening and biomedical diagnostics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据