4.3 Article Proceedings Paper

GaN HEMT reliability

期刊

MICROELECTRONICS RELIABILITY
卷 49, 期 9-11, 页码 1200-1206

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.microrel.2009.07.003

关键词

-

向作者/读者索取更多资源

This paper reviews the experimental evidence behind a new failure mechanism recently identified in GaN high-electron mobility transistors subject to electrical stress. Under high voltage, it has been found that electrically active defects are generated in the AlGaN barrier or at its surface in the vicinity of the gate edge. These defects reduce the drain current, increase the parasitic resistance and provide a path for excess gate current. There is mounting evidence for the role of the inverse piezoelectric effect in introducing mechanical stress in the AlGaN barrier layer and eventually producing these defects. The key signature of this mechanism is a sudden and non-reversible increase in the gate leakage current of several orders of magnitude. This degradation mechanism is voltage driven and characterized by a critical voltage below which degradation does not occur. This hypothesis suggests several paths to enhance the electrical reliability of GaN HEMTs which are borne out by experiments. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据