4.4 Article

Mid-infrared nanoantenna arrays on silicon and CaF2 substrates for sensing applications

期刊

MICROELECTRONIC ENGINEERING
卷 97, 期 -, 页码 197-200

出版社

ELSEVIER
DOI: 10.1016/j.mee.2012.02.025

关键词

Nanoantenna arrays; FTIR; Plasmon resonance; Microfluidic devices

向作者/读者索取更多资源

We report on the fabrication and systematic characterization of nanoantenna arrays with several different geometries realized both on standard silicon (Si) substrates and Calcium Fluoride (CaF2) substrates aimed at the realization of a mid-Infrared protein detector. In particular, we present a novel nanofabrication procedure which allows the adoption of CaF2 in a standard lithographic process with results comparable to the ones obtained on silicon wafers. The transmittance and reflectance spectra of the nanoantennas, were acquired by means of an Infrared microscope coupled to a Michelson Interferometer. In all the nanoantenna devices, the plasmonic resonance follows a linear scaling relation: a lattice parameter change of a +/-(5-10)%, indeed, results in a shift of the Si (1,0) plasmonic resonance frequency which is proportional to 1/a. This scaling behavior offers a useful tool for device frequency tuning, which can be used to obtain a fine spectral overlap with the protein amide-I and amide-II bands. A Lorentzian analysis of the resonance peaks reveals that our nanostructures have an high Q factor (Q = v(0)/Delta v), demonstrating the effectiveness of our fabrication procedures. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据