4.4 Article Proceedings Paper

Integration and electrical characterization of carbon nanotube via interconnects

期刊

MICROELECTRONIC ENGINEERING
卷 88, 期 5, 页码 837-843

出版社

ELSEVIER
DOI: 10.1016/j.mee.2010.06.017

关键词

Carbon nanotubes; CNT; Interconnect; Electrical characterization; Contact; Integration

向作者/读者索取更多资源

Carbon nanotubes (CNTs) are considered a promising material for interconnects in the future generations of microchips because of their low electrical resistance and excellent mechanical stability. In particular, CNT-based contacts appear advantageous when compared with current tungsten or copper technologies and could therefore find an application as metal contacts interconnecting the transistors with the back end of line of the microchip. In this work, the integration of vertical CNT bundles in sub-micron contact holes is evaluated at wafer scale and the major integration challenges encountered in the practical realization of the process are discussed. Nickel PVD films were used to selectively grow CNT into the contact holes at temperatures as low as 400 degrees C, which is the thermal budget available for contacts. The height of the contacts and the length of the CNT are controlled by a chemical mechanical polishing step (CMP) after embedding the CNT into SiO2. Ti/Au metal pads are then formed onto the CNT bundles by PVD and lift-off. The integrated CNT are electrically characterized and an annealing treatment was found to improve the CNT-via resistance. As the electrical properties of the CNT can be evaluated, the structure and the process presented constitute a test vehicle for the development of high-quality CNT-contacts. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据